Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}{ }^{*}$ Jan Kämpen, ${ }^{\text {b }}$
Peter Bubenitschek ${ }^{b}$ and Henning Hopf ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma($ Wae $)=0.011 \AA$
R factor $=0.041$
$w R$ factor $=0.105$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1,4-Bis(dibromomethylidene)cyclohexane: crystal packing with $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \pi$ contacts

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4}$, displays crystallographic inversion symmetry. The packing involves interpenetrating corrugated layers built up via $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \pi$ contacts.

Comment

The title compound, (2), was synthesized as part of a study of compounds related to 7,7,8,8-tetracyano-p-quinodimethane (TCNQ; Hopf et al., 2002). We present here its structure. The molecule, which possesses crystallographic inversion symmetry, is shown in Fig. 1. Bond lengths and angles may be regarded as normal. The double-bond length of 1.316 (11) \AA may be compared to the $1.321 \AA$ (no s.u. available) in 4 -dichoromethylidene-perhydropyran-2-one (Dillon et al., 1997), the only other structure with a $\mathrm{Hal}_{2} \mathrm{C}=\mathrm{C}\left(\mathrm{CH}_{2}\right)_{2}$ unit found in a search of the Cambridge Structural Database (Version 5.26; Allen, 2002). The six atoms of the double-bond system are coplanar, with an r.m.s. deviation of $0.028 \AA$. The $\mathrm{Br}-\mathrm{C}-\mathrm{Br}$ angle is narrow at 111.7 (4) ${ }^{\circ}$, which is, however, normal for $\mathrm{Hal}_{2} \mathrm{C}=\mathrm{C}$ fragments; the mean value for 161 such fragments in the Cambridge Structural Database is 112.8° (search conditions: no disorder, only organics). The ring displays a nearly ideal chair conformation.

The crystal packing (Fig. 2) is based on two types of short contact, $\mathrm{Br} \cdots \mathrm{Br}$ and $\mathrm{Br} \cdots \pi$; there are no short $\mathrm{H} \cdots \mathrm{Br}$ contacts. The contact $\operatorname{Br} 2 \cdots \operatorname{Br} 2(-x, 1-y, 1-z)$ measures 3.496 (2) \AA. The associated $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angles are equal by symmetry at $152.0(2)^{\circ}$, thus corresponding to a type I contact (Pedireddi et al., 1994). The next shortest $\mathrm{Br} \cdots \mathrm{Br}$ contact is $\mathrm{Br} 1 \cdots \mathrm{Br} 2\left(\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right)$ of 3.905 (1) \AA, considerably in excess of the double van der Waals radius. The same symmetry operator is involved in the contact $\mathrm{C} 1-\mathrm{Br} 1 \cdots(\mathrm{C} 1=\mathrm{C} 2)$, in which the $\mathrm{C} 1-\mathrm{Br} 1$ vector makes an angle of 84.4° with the double-bond plane. The contact distances from $\mathrm{Br} 1(\mathrm{~A})$ are 3.396 (7) to C1, 3.405 (7) to C2 and 3.34 to the bond mid-point. These distances may be compared to $3.18-3.36 \AA$ established for $\mathrm{Br} \cdots \pi$ in the metastable charge-transfer complexes of bromine with benzene and toluene (Vasilyev et al., 2002).

Received 8 June 2005 Accepted 9 June 2005 Online 17 June 2005

The overall effects of the contacts is to form corrugated layers parallel to (011). The layers are interpenetrating in pairs; one layer occupies the voids of the other. Only one such layer is shown in Fig. 2.

Experimental

Compound (2) was prepared as described by Hopf et al. (2002) and recrystallized from dichloromethane-pentane. Spectroscopic and analytical data were consistent with the proposed structure.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Br}_{4}$
$M_{r}=423.78$
Monoclinic, $P 2_{1} / n$
$a=6.6033$ (10) \AA
$b=12.3957(18) \AA$
$c=6.7152$ (10) \AA
$\beta=102.783$ (12) ${ }^{\circ}$
$V=536.03(14) \AA^{3}$
$Z=2$

$$
D_{x}=2.626 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 62 reflections
$\theta=3.5-12.5^{\circ}$
$\mu=14.96 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Tablet, colourless
$0.4 \times 0.3 \times 0.15 \mathrm{~mm}$

Data collection

Siemens P4 diffractometer

 ω scansAbsorption correction: ψ scan
(XEMP; Siemens, 1994)
$T_{\text {min }}=0.30, T_{\text {max }}=0.95$
973 measured reflections
901 independent reflections
738 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.076 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=0 \rightarrow 14 \\
& l=0 \rightarrow 7 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 247 \text { reflections } \\
& \quad \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.105$
$S=1.13$
901 reflections
56 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.064 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.96 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.71 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.043 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 1$	$1.899(7)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.316(11)$
$\mathrm{Br} 2-\mathrm{C} 1$	$1.894(7)$		
			$123.7(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 2$	$124.1(6)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$123.0(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Br} 1$	$124.2(6)$	$\mathrm{C} 1-\mathrm{C} 2-4^{\mathrm{i}}$	$113.2(6)$
$\mathrm{Br} 2-\mathrm{C} 1-\mathrm{Br} 1$	$111.7(4)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4^{\mathrm{i}}$	
			$-51.3(10)$
$\mathrm{C} 4^{\mathrm{i}}-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-51.4(10)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 2-\mathrm{C}^{\mathrm{i}}$	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C}^{\mathrm{i}}$	$50.9(10)$		

Symmetry codes: (i) $-x+1,-y+1,-z$.
H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.98 \AA ; U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP5 (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Figure 1
The molecule of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms are related to labelled atoms by $1-x, 1-y,-z$.

Figure 2
Packing diagram of the title compound at $x \simeq 0$ viewed perpendicular to the $b c$ plane. Short contacts (see Comment) are indicated by dashed bonds. H atoms have been omitted.

We thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Dillon, J. L., Gao, Q., Dillon, E. A. \& Adams, N. (1997). Tetrahedron Lett. 38, 2231-2234.
Fait, J. (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Hopf, H., Kämpen, J., Bubenitschek, P. \& Jones, P. G. (2002). Eur. J. Org. Chem. pp. 1708-1721.
Pedireddi, V. R., Raddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). $X E M P$ and $X P$ (Version 5.03). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Vasilyev, A. V., Lindemann, S. V. \& Kochi, J. K. (2002). New J. Chem. 26, 582592.

